

Testing 201: Gravity Grease Interceptors (GGIs)

Tackling a 2000 lb gorilla

Dr. Greg Williams, P.Eng. Managing Director, Good Harbour Laboratories NSF FOG Workshop, February 27, 2018

Interceptor Definitions

• The Uniform Plumbing Code refers to ASME A112.14.3, which is very general:

 Grease interceptor: plumbing appurtenance(s) that is (are) installed in the sanitary drainage system in order to intercept oily and greasy wastes from wastewater discharges

Interceptor Definitions Cont'd

- However A112.14.3 does specify that the flow rating must be < 100gpm (or it can't be tested) and the installation must be one of 4 types:
 - 1. External flow control, with air intake, direct
 - 2. External flow control without air intake, direct
 - 3. No external flow control, direct
 - 4. No external flow control, indirect

Definitions & Basics

HMI'S

- Some time between 1996 and 2007, the Foreword of G-101 started to state the difference between HMIS and GGIs
 - hydraulic flow action + air entrainment + gravity vs. gravity
 - Also, HMIs follow the flow and installation constraints of A112.14.3
- By 2009 the definition of HMI made it into IAPMO IGC 273

Interceptor Definitions - GGI

 Gravity Grease Interceptors (GGIs) – from the 2009 Uniform Plumbing Code:

A plumbing appurtenance or appliance that is installed in a sanitary drainage system to intercept nonpetroleum fats, oils, and greases (FOG) from a wastewater discharge and **is identified by volume, thirty (30) minute retention time, baffle(s), not less than two (2) compartments, a total volume of not less than three-hundred (300) gallons, and gravity separation**.

[These interceptors comply with the requirements of Chapter 10 or are designed by a registered professional engineer.] Gravity grease interceptors are generally installed outside.

- Since the distinction is relatively recent and appears only in the Foreword of PDI G-101 and not in the body it seems a little informal but it is widely accepted now
 - Good or bad the distinction is useful
- What about retention time?

Retention Time

- **GGIs** have a 30 min retention time, *per* the UPC
- Since they also have a minimum volume (300 gal) they have a minimum flow rate of 10 gpm
 - There is no maximum flow rate
- **HMI** have a 1 min retention time *per* ???
 - PDI G-101 Section 3.1, specifies 2 compartments, Section 5.3 specifies that compartment volume (gal) = flow rate (GPM), Section 7.3 specifies discharging both sinks, therefore PDI implies a 2 minute test. ASME112.14.3 specifies ≤126 s
- No where is retention time actually specified
 - The volume of the unit is not discussed

Why does this matter?

- The fact that a 1 minute retention time for HMIs is generally accepted but not written into actual test protocols, along with the other definition we have discussed, creates a situation in which testing GGIs is not currently possible
- This will be discussed in the next section

Existing Test Protocols

Existing Test Protocols

Existing Performance Test Standards

- HMIs can be tested to
 - PDI-G101
 - ASME 112.14.3
 - CSA B481.1
 - CSA B481.2
 - EN 1825-1

Existing Test Protocols

Existing Performance Test Standards Cont'd

• GGIs can be tested to:

memegenerator.net

- There are in fact some protocols for larger interceptors:
 - IGC 273-2009 was intended for interceptors over 100 gpm, never used. Basically PDI with more sinks.
 - NSF SE 15741 is for interceptors with capacities over 200% of the minimums defined in A112.14.3 i.e. 4 lbs/gpm
- They have never been used because they are impractical, perhaps impossible
 - NSF has run 15741 and apparently it worked well, though the data is not public

- The HMI capacity requirement is defined in terms of flow rate, 2 lb grease/gpm
- The detention time rule of thumb effectively makes volume equal to flow rate so capacity requirement becomes 2 lb grease/gallon of interceptor volume
- If a "typical" GGI has a 1000 gallon volume, that is 1 ton of grease

- Melting 2000 lb of lard requires:
 - Someone to manage lard more or less full time
 - Energy consumed would be around 40 kWh, not that much but all waste
- This lard, which costs ~0.70/lb to buy, is also waste

Time

- IGC 273 & PDI G-101 allow testing of higher flow interceptors (we will assume this means higher volume too) using the same test PDI G-101 test
- 100 gpm PDI test can be run in one day and will result in retention of ~200 lb of lard, so a 1000 gallon GGI will require 10 days of testing

– Impact of stopping at night and on weekends?

 NSF 15741 allows acceleration that should reduce the required number of runs to ~30 which makes it a 3 day test

NSF SE 15741

- A 3-5 day that wastes ~\$1400 with of lard is not ideal but why not use it?
- It will not be 3-5 days and \$1400
 - It will be much more painful than that

- An HMI turns over ~2 complete volumes each run, under the circumstance 90%+ removal is very impressive
- A 1000 gallon GGI will turnover ≤20% of its volume each run, it would have to be designed to fail in order to get <90% removal
- Assuming efficiency equivalence in terms of volumes treated actually puts you at a factor of 20 so assuming 10 times the runs is conservative

- PDI and NSF allow for > 100 gpm flow rate per test by adding more sinks
- Note that scaling flow requires scaling volume and vice versa
- This is where the "impossible" from slide 14 comes in
 - Flows over 100 gpm probably don't make sense and there is no option to scale just volume

- The existing protocols call for adding identical sinks in series in order to achieve the desired flow rates for testing above 100 gpm
 - This adds resistance (more pipe) but no more driving force so flows will not increase as expected.
 There is also the challenge of balancing flows in a manifold. I do not think anyone knows what will actually happen

Manifolds

According to this presentation...

School of Civil and Environmental Engineering

Cornell University

Manifolds (Cont'd)

Calculating Flow through Manifolds looks something like this...

Port Flow

Manifolds (Cont'd)

And this...

Riser Head Loss

Manifolds (Cont'd)

And this...

And even so there are empirical coefficients

Future GGI Protocol

Future GGI Testing

- There was an IAPMO subcommittee, Z1001.1, that was working on a GGI protocol but as far as I know this effort has stalled
- This leaves the field wide open for protocol development, with the significant constraint that the test must be reasonably comparable to PDI-G101

The end user needs to be able to compare

Addressing the Lard Problem

- CSA B481.2 uses oil instead of lard
 - The injection method is also different but that need not be adopted

- Matching density and viscosity should not be too difficult
- This is much faster and less wasteful
 - Water does not get frozen in the oil matrix so oil recovery is possible

Addressing the Time Problem

- NSF SE 15741 proposes adding lard through the lid and alternating sink dumps and pre-loads
- This concept of pre-loading could be refined to require pumping in lard or adding extra large amounts through sink dumps
- Switching to oil makes this easier and eliminates some of the issues of running for >1 day

Addressing the Time Problem (Cont'd)

- PDI allows computation of efficiency once every 5 increments or less until near the end
- PDI curves are not published but I think we all know they look something like this

Addressing the Time Problem (Cont'd)

Addressing the Time Problem, Grand Finale

- Based on the foregoing, one can imagine pre-loading relatively large amounts and running a few sink dumps for the first 1000+ pounds
 - This would save hours and dollars

A fly in the grease trap

- A commonly mentioned problem with switching to oil is measuring oil in water
 - The old method, hexane extraction, works very well but is out of favour
 - FTIR is difficult to implement so results are variable
 - GCMS would work well but it expensive
- Why not just skim
 - The methods above are accurate to ppm but the existing analytical technique is not and that creates a double standard. Gravimetric all the way!

Conclusion

- A reasonable test for GGIs that would allow them to be compared to HMIs is possible, though challenges remain
 - Not just technical, there are acceptance issues
- You will note I have not addressed the issue of storage time and acidification, that is a different issue
 - I am not sure the science is all the way there yet and in any case it has nothing to do with removal

• I am genuinely interested in feed back since this is all at the idea stage

Thank you